Tag Archives: well data

Part 2: Are we progressing? Oil & Gas Data Management Journey

In my previous blog, I looked back to the 1960s, 70s, and 80s, and how E&P technical data was generated and stored. For those three decades, data management was predominantly and virtually exclusively on paper. As I looked to the 90s, I found them packed with events that affected all areas of data value chain, from generation to consumption to archival.

Early 90s: Driving Productivity Forward

The early 90s continued one dominant theme from the late 1980s: the relentless drive for increased productivity throughout the business. This productivity focus coincided with three technological advancements that made their way into the industry. First of all, dropping costs of hardware with their growing capacity meant that computers became part of each office with meaningful scientific programs on them. Second, the increased capabilities of “networks” and “server/client” opened up new possibilities by centralizing and sharing one source of data. Third, proven success of relational databases and the SQL offered sophisticated ways to access and manipulate more data.

All this meant that, by the early 90s, engineers and the majority of geoscientists were able to do an increasing portion of their work on their own computers. At that time, the world of computer was divided into two; UNIX for G&G professionals and PC for the rest. Despite the divide of technologies, increases in productivity were tangible. Technology had proven itself useful and helpful to the cause, and was here to stay.

Petroleum Geoscience- and Engineering- specific software applications started springing up in the market like Texas wild flowers in March. Although some companies built seismic and log interpretation software back in the 70s using Cray super computers and on DEC mini computers, not many could afford an $800,000 computer (yes, one computer that is) with limited capacity. “I remember selling software on time share for CGG back in the 80s” my friend commented, “companies had to connect to expensive super computers on extremely slow connections” he adds.  So when the computer became affordable and with the right power for E&P technical applications, the software market flourished.

The industry was thirsty for software and absorbed all of what was produced on the market and then some; operators who could afford it created their own. The big service companies decided they were not going to miss out. Schlumberger acquired Geoquest in 1992 for its seismic data processing services and tools, then also acquired Finder, Eclipse and a long string of other applications.

The only problem with all these different software applications was that they existed standalone; each application had its own database and did not communicate with another. As a result, working on each hydrocarbon asset meant multiple data entry points or multiple reformatting and re-loading. This informational and collaborative disconnect between the different E&P applications was chipping away the very productivity and efficiency the industry was desperate to harness.

Nevertheless, the standardization of defining, capturing, storing and exchanging E&P data was starting to be of interest to many organizations. PPDM in Canada and later POSC in the USA (now Energetics) were formed in 1988 and 1990 respectively. PPDM’s mission at the time was focused on creating an upstream data model that could be utilized by different applications. POSC’s mission was broader; to develop a standardized E&P data model and data exchange standards.

Schlumberger had a solution for its own suite of applications; it offered both Geoframe and Finder as answers to the data mess with Finder being the master database that fed Geoframe with information, and Geoframe integrated the various software applications together.

Mid-90s: Making Connections

In the mid-90s, Halliburton acquired Landmark Graphics and unveiled the OpenWorks platform for its suites of applications in April 1997 at the AAPG. Their market positioning? Integrated reservoir management and a data management solutions. OpenWorks offered similar data integration to GeoFrame but with its own set of scientific software. Geoframe and OpenWorks would butt heads for years to come, both promoting their vision of data management and integrated workflows. It seemed that the larger companies were either a Schlumberger or Landmark shop.

In 1997, the Open Spirit Alliance funded by a consortium (Schlumberger, Shell and Chevron) was born and interoperability was its mission. PrismTech was to develop and market an application integration framework that any company could utilize, it was to be open. Open Spirit platform was officially launched at the SEG in 1998.

Late 90s: Big Industry Changes

Come the late 90s, another drop in oil prices combined with other macroeconomics appeared to trigger a surge in “mega” M&A activities starting with Exxon acquiring Mobil in 1998, BP acquiring Amoco in 1999, and then Conoco acquiring Philips in 2000, these mega acquisitions continued through early 2000s.

All this M&A in the 90s added complexity to what was already a complex technical dataflow environment.

For the data nerds

  • In the 90s, the industry rapidly evolved from hand-written scout tickets, and hand-drawn maps to electronic data.
  • The “E&P software spring” produced many silo databases. These databases often overlapped in what they stored creating multiple versions of the same data.
  • The IT department’s circle of influence was slowly but surely expanding to include managing E&P data. IT was building data systems, supporting them, uploading data to them and generating reports.
  • Engineers and Geoscientist still kept their own versions of data, but in MANY locations now. While hardcopies were the most trusted form (perceived to be the most reliable), technical data was also stored in disks, network drives, personal drives and in various applications’ databases and flat files. It compounded the data management problems of the years prior to computerization of processes.
  • Relational databases and SQL proved to be valuable to the industry. But it was expensive to support a variety of databases; many operators standardized and requested systems on Oracle (or SQLServer later).
  • Systems not on relational databases either faded away to the background or converted to relational databases that were accepted by operators.
  • Two standard data models emerged PPDM and POSC (now Energetics) and one data integration platform from the OpenSpirit (now part of the Tibco suite).
  • Geos and engineers validated and cleaned their own data (sometimes with the help of Geotechs or technical assistants) prior to their analyses.

 Stay tuned for the Millennium, and please add your own memories (and of course please correct me for what is not accurate ….)

Are we progressing? Oil & Gas Data Management Journey…

Last month, I had dinner with a long-term friend who is now part of a team that sets strategic technical plans for his E&P employer. Setting strategies requires a standardized view of technical & financial data across all assets, in this case, multinational assets around the world. This data is required at both granular and helicopter level.  One of the things he mentioned was “I have to start by fixing data standards. I am surprised how little progress data-management standards have made since the POSC days in the mid 90s.”

How did Data Management evolve in oil & gas? Are we repeating mistakes? Are we making any progress? Here is what my oil and gas friends and I remember in this first part of a three-part series.  Please join me on this journey down memory lane and add your own thoughts.

The 1960s & 70s

Perhaps we can call these times, mainframe times.  Mainframes started to make their way into our industry around the mid-60s. At that time, they were mostly used to maintain accounting data. Like most data at this time, E&P accounting data was manually entered into systems, and companies employed large data-entry staff to input. Any computational requirement of the data was through feeding  programs through “punch cards”.

Wireline logs (together with Seismic data) were one of the very first technical data that required the use of computers, mainly at the service provider’s Computer Centers and then at the large offices of the largest major operators. A friend of mine at Schlumberger remembers the first log data processing center in Houston opening about 1970. In the mid-70’s more oil city offices (Midland, Oklahoma City, etc.) established regional computing centers. Here, wireline log data, including petrophysical and geological processing, was “translated” from films into paper log graphics for clients.

A geophysicist friend remembers using mainframe computers to read seismic tapes in the mid-70s. He said, “Everything was scheduled. I would submit my job, consisting of data and many Punch Cards, into boxes to get the output I needed to start my interpretation. That output could be anything from big roll of papers for seismic sections to an assemblage of data that could then be plotted. Jobs that took 4 hours  to process on a mainframe in the 70’s are instantaneous today”

The Society of Exploration Geophysicist (SEG) introduced and published data formatting standard SEG_Y in 1975.  SEG-Y formats are still utilized today.

The need to use a standard, well number identification process became apparent as early as 1956. Regulatory agencies started assigning API numbers to wells in the late 60s in the USA. The concept of developing world wide global well ID numbers is still being discussed today with some organizations making good progress.

The 2nd half of the 70s, pocket calculators and mini computers made their way to the industry. With that some computations could be done at the office or on the logging truck at the field without the need for Mainframes.

The 1980s

Early 80s. With the proven success of 3D seismic introduced by ExxonMobil, large and special projects started heavily processing 3D seismic on Mainframes. However, the majority of technical data was still mainly on paper. Wireline logs were still printed on paper for petrophysicists  to add their handwritten interpretations. Subsurface maps were still drawn, contoured and colored by hand. Engineering data came in from the field on paper and was then recorded on a running paper table. A reservoir engineer remembers   “We hired data clerks to read field paper forms and write the data in table (also on paper)”.

As personal computers  (PCs) made their way into the industry, some large companies started experimenting,  albeit they lacked the personal side since PCs were numbered and located in a common area. Employees were only given occasional access to them. These were also standalone computers, not networked. Data transfer from one PC to another happened via floppy disk. It was during this time that engineers were first exposed to spreadsheets (boy did they love those spreadsheets! I know I do)

Mid-80s. March 1986, oil prices crashed, a 55% drop over few days. In the three years following the crash, the industry shed staff the way cats shed hair. The number of petroleum staff dropped from approximately 1,000,000 employed staff to approximately 500,000 in three years.

oil price

Late 80s. But what seemed bad for the industry, may have also done the industry a favor. The oil price crash may have actually accelerated the adoption of technology. With a lot less staff, companies were looking for ways to accomplish more with less staff.

A geologist friend remembers using Zmap as early as 1988, which was the beginning of the move towards predominantly computer-based maps and technical data.

For data nerds: 

  • Engineers and geo professionals were responsible for maintaining their own data in their offices.
  • Although not very formal, copies of the data were maintained in centralized “physical” libraries. Data was very important in the “heat of the moment” after the project is complete, that data is someone else’s issue. Except there was no “someone else” yet.
  • This system produced many, many versions of the same data (or a little variation of it) all over. This data was predominantly kept on physical media and some kept on floppy disks which were mostly maintained by individuals.
  • From the 60s through to the end of the 80s, we can say there were mostly two global standards, one for the seismic data formatting – SEG-Y – and the other for log data – LAS (Log Ascii Standard). Any other standards were country- or company-specific.

I would love to hear from you if you feel I have missed anything or if you can add to our knowledge of how technical E&P data was managed during the above period.

Stay tuned for the 90s …